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Abstract

Material wrinkles drastically alter the structural

constitutive properties of thin films. Normally linear

elastic materials, when wrinkled, become highly

nonlinear and initially inelastic. Stiffness' reduced by

99% and negative Poisson's ratios are typically

observed. This paper presents an effective continuum
constitutive model for the elastic effects of material

wrinkles in thin films. The model considers general
two-dimensional stress and strain states (simultaneous

bi-axial and shear stress/strain) and neglects out of

plane bending. The constitutive model is derived from

a traditional mechanics analysis of an idealized physical

model of random material wrinkles. Model parameters

are the directly measurable wrinkle characteristics of

amplitude and wavelength. For these reasons, the

equations are mechanistic and deterministic. The

model is compared with bi-axial tensile test data for

wrinkled Kapton ® HN and is shown to deterministically

predict strain as a function of stress with an average
RMS error of 22%. On average, fitting the model to

test data yields an RMS error of 1.2%

Introduction

Thin films are increasingly used as structural

elements of lightly stressed space structures such as

sunshietds, inflatable parabolic reflectors, and solar
sails. _; Analysis often assumes a linear behavior,

however, fabrication, handling and packaging processes

can induce permanent material wrinkles. These
material wrinkles drastically change the thin film
constitutive behavior and consequently, the shape,

dynamic, and reflective characteristics of structures.

Consider a 400 in. diameter thin film reflector that

requires a 0.2 in. shape accuracy and hence, a (0.2

in.)/(400 in.) = 0.0005 strain accuracy. The structure
will exhibit some level of material wrinkles due to

permanent creases formed in the manufacturing,

packaging, and deployment processes. If these

wrinkles are assumed to be spaced at 0.5 in. intervals, a

wrinkle amplitude of only 0.0079 in. will cause strain

errors equal to the required strain accuracy, Equation
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(26). Further, in a 1.0 rail thick material with E = 106

psi and v = 0.3, a 133 psi equibiaxial stress is required
to remove 95% of strains due to wrinkles, t At this

stress level, linear strains due to mid-plane stretching

( e,,___a _ =¢y(1-v)/E=O.O00093 ) are much larger

than strains due to wrinkles

(e,.,,_,_ = 0.05" 0.0005 = 0.000025 ). However, at the

low stress levels (cr=5psi) typical of space

applications, deformations due to wrinkles (0.000144)

dominate over mid-plane stretching strains (0.000004).:

The undeformed profile of such wrinkles is shown to

scale in Figure 1. The wrinkles are hardly visible; yet,

they drive the structure's shape and detrimental errors

result with their neglect.

Wrinkles alter the dynamic characteristics of a

structure through changes in effective material stiffness

properties as well. At very low stress levels, the

preceding wrinkles reduce Young's modulus by 99.5%
from that of the base material and induce a minimum

Poisson's ratio of-0.63. _''"

The preceding predictions are made based on the

constitutive model presented in this paper. While

previous studies described an experimental method to

measure the stiffness effects of random wrinkles, they

did not fully characterize constitutive behavior nor did

they enable the response of an untested material to be

predicted) In contrast, the constitutive model

presented here is deterministic and allows preliminary

constitutive behavior predictions to be made without

tensile testing.

The model is a two-dimensional effective

continuum representation of random material wrinkles

and is derived from a traditional mechanics analysis of

an idealized physical model of wrinkles. Base material

mid-plane stretching and global out-of-plane bending

are neglected. Toward this end, wrinkled thin film

deformation terminology and mechanisms are first

t Eq. (22) with _ =-0.05 gives a=40.5, Eq. (10)

gives _r = 3.29psi and from Eq. (8), ff = 133 psi.

t From Eq. (22), with e o = 0.0005 and _z = 1.52.

§ From Eq. (24), Eo = 5334 psi.

"' Eq. (25) evaluated at crj = 0 and _z2 = 23.2,

gives v_,s,, =-0.93 so that v,_,ot=-0.93 + 0.3 = -0.63.



reviewedandthenthemodelisderived.Lastly,test
resultsdemonstratingthedeterministicqualitiesofthe
modelarepresented.

Wrinkle Terminology

Material wrinkles are permanent out-of-plane

deformations caused by yielding of a material when it is

folded in a tight radius or creased. Material wrinkles

remain after loads are removed. In contrast, structural

wrinkles are regions of temporary elastic buckling

caused by compressive membrane stresses. Structural

wrinkles disappear when loads are removed. Only
material wrinkles are considered here.

Figure 2 illustrates two classes of material

wrinkles, random and systematic. Random wrinkles are

caused by uniformly crushing a thin film. They are

effectively homogeneous and directionally independent

at scales much larger than a single wrinkle. Systematic

material wrinkles are those generated by folding or

otherwise creasing a thin film in a specific, repeating

pattem. Although systematic wrinkle patterns may
exist that result in constitutive behaviors similar to

random wrinkles, they are generally different.

Fundamentally, the directional dependence of

systematic wrinkles gives rise to a material orientation

dependence. Only random material wrinkles are
considered here.

Wrinkled thin film deformations may be either
elastic or plastic. Consider a thin film that is crushed

into a small ball to induce random wrinkles as shown in

Figure 3a. This state corresponds to a thin film

structure that is packaged for transportation. As shown

in Figure 3b, the film does not expand to any

resemblance of a fiat surface when compressive loads

are removed. Rather, it retains a shape closer to that of

the compressed ball. This behavior is a result of plastic

deformations that have occurred in the crushing

process. In this ball-like state, the material will exhibit

an elastic behavior only for very small applied loads.

Application of larger loads (Figure 3c) will cause

reverse plastic deformations in the vicinity of creases

and permanently decrease wrinkle amplitudes. As

wrinkles are reduced by higher stresses, the material

will no longer return to a ball-like shape; a plastic

response is observed. With adequate loads, enough

wrinkles are removed and a sample can be considered

flat at scales much larger than a single wrinkle (Figure

3d). In this quasi-flat state, loads up to the maximum

applied stress will result in only elastic deformations.

The material will follow the elastic response curve.

Two constitutive behavior problems are apparent

with the deployment and operation of thin film

structures. First, there is the plasticity problem of

characterizing material behavior as it is stretched out

from a packaged shape to an operational shape.

Second, there is the problem of characterizing material

behavior in the operational state. In this paper, the

hyperelastic behavior of randomly wrinkled thin films

in the operational state is considered.

Deformation Mechanisms

The dominant deformation mechanism in wrinkled

thin films, bending, is revealed through the concept of a

developable surface. A developable surface is one that

can be formed from a flat plane through only bending;

extensional or mid-plane stretching is not allowed. 4

Wrinkled thin films begin as fiat planes, are wrinkled

by material bending, and can be returned to a flat plane

through only material bending.

This bending mechanism enables a qualitative

description of the uniaxial constitutive behavior of

wrinkled thin films. At low stress levels, bending

allows the material to be highly compliant. Small

changes in stress cause large changes in strain as

wrinkles easily pull out. When wrinkles are mostly

pulled out, the bending deformation mechanism no

longer exists. The stressed material is much stiffer

because it can only deform through mid-plane

stretching governed by Hooke's law.

Deformations in the direction transverse to the load

are described by a kinematic mechanism. In contrast to

typical engineering materials, wrinkled thin films

expand in both the axial and transverse directions when

subjected to a uniaxial stress; Poisson's ratio is

negative. This is a kinematic consequence of the

bending deformations associated with the expansion of

wrinkles not parallel to the load direction. A uniaxial

stress will pull out all wrinkles that are not exactly

parallel to the load axis. Because wrinkles expand

perpendicular to their axis, the expansion of an off-axis

wrinkle will cause positive strain components in the

load direction as well as the transverse direction (Figure

4).

Requirements for Characterizin_

Constitutive Beha_4or

It will be shown that the general in-plane

constitutive behavior of a preconditioned randomly

wrinkled thin film is described by the single function,

e1(o'1,o'2), where 1 and 2 refer to the coincident

principal stress and strain directions. The model is

limited to scales much larger than a single wrinkle, such

that the effects of individual wrinkles average out to an

effective continuum behavior. The pristine or

unwrinkled material is assumed to be isotropic and

linearly elastic (while this assumption limits the range

of materials to which the model applies, it is a

mathematical requirement of the model). Within these

assumptions, however, the description is general.

General material deformations (e_,e,,, y_,) are

considered for a general stress state ( o"x, or, r_ ).



Characterizingthegeneralin-planeconstitutive
behaviorof a materialmathematicallyconsistsof
determiningthe threefunctions,e,(o';,o'.,,,r_),

ey(O',,cry,rv,) and 2, (o'x,o'y,r_). The reduction of

these to the single function, el (o-l,o'_), follows from

the initial isotropy, strain-induced orthotropy, and

coincidence of principal stress and strain axes in

randomly wrinkled thin films.

Wrinkled thin films are isotropic with respect to

incrementally small deformations when wrinkle

geometry is effectively symmetric about any and all

planes. This occurs only under equibiaxial and zero

stress conditions, where wrinkles are pulled out equally
in each direction. Thus, wrinkled thin films lack an

initial material directional dependence and are called

initially isotropic. Consequently, any stress state path

will result in the same deformation state (relative to the

stress orientation), regardless of material orientation.

Wrinkled thin films also exhibit strain-induced

orthotropy. Any deviation from an equibiaxial stress

state causes wrinkle geometry to pull out non-

uniformly. Wrinkles pull out most in the direction of

the major principal stress and least in the orthogonal

direction of the minor principal stress. Because wrinkle

geometry remains symmetric about two orthogonal

planes, the material is orthotropic and the principal

stress directions always coincide with principal material

directions. When principal stress directions coincide

with principal material directions in orthotropic

materials, a shear strain is not induced. Thus, principal

stress directions always coincide with principal strain
directions.

The original three strain functions (e,,ey,7%) are

reduced by considering only principal stresses and

strains, as follows. Any arbitrary stress state can be

expressed in terms of principal stresses (o'1, or:). The

principal strains are then calculated from ej (o't,o'_)

and ee(o'_,o'2). The principal strains are lastly

transformed back to the original orientation to arrive at

the general strain functions (e_, ey, _'_ ).

Further, due to the material orientation

independence, stress and strain can be transformed by

90 deg. and the same behavior results,

e_(,7,,a_) = e, (,7_,a,). (l)

Thus, to determine the general in-plane constitutive
behavior of a directionaIly independent hyperelastic

material it is sufficient to characterize the single

function, e_ (tr, cr_). Further restricting the range of

stresses, thin films are assumed to have a sufficiently

low bending stiffness that they buckle when the

minimum principal stress is compressive. Only tensile

principal stresses are considered.

Deterministic Mechanistic Constitutive

Model

The profile of a wrinkled Kapton ® HN sample is

shown in Figure 5. Two types of wrinkles are present:

small radius creases and large radius curves. The large

radius curves pull out at relatively low stress levels,

leaving creases to dominate material constitutive

behavior. This observation prompted the development

of a physical model based on tightly creased beams as

opposed to large radius curves. Illustrations of the

physical model in original and deformed configurations

are shown in Figure 6. The model is created from a

rectangular arrangement of beams bent in the initial

profile of a zigzag and connected at points of maximum

distance from mid-plane. The connecting points were

chosen such that straightening out one set of parallel

beams has a tendency to do the same to the transverse

set of beams, thus, including the negative Poisson's

ratio mechanism. To control the Poisson's ratio effect,

the model also includes linear springs at the beam

connecting points. This allows beams in one direction

to straighten out, and encourages beams in the

transverse direction to also straighten out, but does not

require them to do so by an equal amount.

The model is considered to represent only principal

material axes. When subjected to stress states that

include shear, the physical orientation of the model is

not fixed. It is assumed to rotate and align with the

principal axes.

The macroscopic in-plane constitutive behavior of

the model, el (o'_,o'2), is derived by first analytically

determining the effective extensional behavior of the

smallest repeating element of the model. A

geometrically nonlinear beam-column analysis is used.

The model components are then mathematically
assembled to arrive at the effective extensional

behavior of the full model.

The natural configuration profile of the smallest

model element is given by,

a o
w = 2--x. (2)

I

in bending a straight beam into a zigzag profile, it is

shortened by an amount (6 0 , Figure 7) approximated

by, s

: ! )2 2 . (3)
8o 2_kdxJ dx= l

This leads to an effective initial shrinkage strain of,



Eo 6o 6o = 1

=L--= I+Go l+i(/ 12" (4)

2L.o)
The initial shrinkage is a direct measurement of how

much smaller the wrinkled and preconditioned material

under zero stress is compared to the unwrinkled sample

under zero stress. Strains are engineering strains and

are based on a gage length that corresponds to the

pristine material under zero stress. As a result, the

strains predicted by the model are negative; wrinkles

always have a tendency to effectively shrink materials.

A free-body diagram of the model repeating

element is shown in Figure 8. Moments are established

in the beam given by,

M = Pw- xQ / 2. (5)

The moment is based on the deformed profile (w) to

include the geometrically nonlinear effects of large

displacements, w is the profile of the beam al_er P

and Q are applied and it is given by,

w = w o + wl, (6)

where wj represents the displacements caused by P

and Q that are in addition to %. The governing

differential equation for deflection of the beam-column
is,

_x 2 ( wo + ws )- x . (7)

The final constitutive model is simplified by

introducing the two non-dimensional ratios (r and ,8.

oc is the ratio of P to the Euler buckling load of the

beam (P_.) and ,8 is the ratio of the transverse

deflection (y,,,_) caused only by Q to the initial

wrinkle amplitude, a o ,

p_r=n-2-_2/, or= cr = P PI 2o-_ _= x2-----_' (8)

QP ,8 = ym = QP (9)
= 47' ao 4sEIo---S"

In evaluating try,, the beam length and width are equal

to the wrinkle wavelength and the beam thickness is the

material thickness,

(lO)
ao,= 12kt)"

With the non-dimensional parameters, Equation (7)

becomes,

02% dr2
Ox2 °t--if-(wo +_)) -24ao= -p---U-x. (ll)

The boundary conditions for Equation (I1) are

ws = 0 at x = 0 and w_ = 0 at x = l]2, resulting in the

solution,

W=Wo+W, = _[12n'xfl.J'_

The ratio of the loaded beam amplitude to the original
beam amplitude, at the coupling spring connection

point ( x =//2) is,

_=w I =
ao =-_/z . (13)

XT_p/, "[6_',8'f_ + (XzOt- 12,8 ) tanh f2"Vt_)]

The total shortening ( 6 ) of the beam-column, due

to initial bending and application of loads, is

approximated using, 6

I/2/ dw'Q

This leads to the one-dimensional creased beam-column

constitutive equation,

i=__e ___=

go go 2xso, H

{n',,/'_ [x4cr2 - 24n'2ocfl + 288,82 (15)

Equations (13) and (15) are used to formulate the

behavior of the unit cell of Figure 9. This is the

smallest unit that fully captures the behavior of the

model. A linear spring of non-dimensional stiffness _-

is used as a first order approximation of the mechanism

coupling axial and transverse strains. The spring does

not structurally represent an identified deformation
mechanism; it mimics behavior observed in test data.

Normally, such a caveat would prevent a model from

being deterministic. Hower, it has been observed that

• " typically takes a value close to 0.5 and this value is
assumed in the model. It is also assumed that there is a

elusive structural explanation that justifies the

assumption.

A force balance on the two beam-columns of the

unit cell results in the following two equations for

transverse loads,

,8, = r(_2-_,) and ,82 =-,8,, (16)

where,



fi-I = a-L and a2 = a-'L. (17)
ao "70

Subscripts 1 and 2 refer to the model beam and

principal stress/strain directions. _- is the ratio of the

linear spring stiffness (k) to the effective linear

transverse stiffness of the beam (k_¢_,_ = 48EI/l _ ),

k k/3
,,-.... . (18)

k_i_ 48EI

Equations (16) are two equations in t, and t2 with

solution,

,Os-- 2 xTracr, a'2 [-qr_f tanh (2,f_'11

Substitution of Equation (19) into Equation (15) gives
the final effective continuum constitutive behavior of

the model,

_/ -- El _

eo

sech ,,"ras (tc4t_l2
2roSa, 3 , (20)

-24.2 :1+ cosh(../Z:,))

where, if x = 1/2 is assumed,

Equation (20) is graphed in Figure 10. For the special

case of equibiaxial stress (or = aj = at2), the model

reduces to,

_-:- 2x-2_ sech (2,f_f (x,f_ + sinh (x,f_)). (22)

Total strains are the sum of strains due to bending,

Equation (20), and strains due to mid-plane stretching,

C "' = e, +eU"-
(23)

eT,._o.____K(1_1 -va_)"

Initial Stiffness

The model reveals a surprisingly simple expression
for the initial (near zero stress) effective Young's
modulus,

I l-' Ill-'= = or= a_ = ty_, 8 (24)

The effective initial Poisson's ratio turns out to be a

constant, independent of specific wrinkle geometry.

v° =-O--_ = 3- o_,1 --. (25)
x--_- i

A minimum Poisson's ratio of-0.933 occurs when

Equation (25) is evaluated at a _ze = 23.2.

Model Parameters

The two model parameters that vary with different

randomly wrinkled thin films are eo and o'_,. Because

the model is deterministic, these parameters can be

calculated directly from measurements of material

microstructure characteristics: wrinkle amplitude and

wavelength. To calculate wrinkle geometry from the

model parameters, it is oRen useful to use the inverted

form of Equations (4) and (10),

Ue-- l 1 [eo
l = Zrt __ and ao = -'_ _ l- eo

(26)
120"_

The model parameters have physical interpretations

that enable intuitive comparisons of different wrinkle

geometries and materials. Parameter interpretations are
most perceptible for the case of equibiaxial stress,

which is graphed in Figure 11 for several representative

parameter values. ¢y,_ controls the relative stress level

at which wrinkles pull out; a larger o-_ indicates that a

larger stress is required to pull wrinkles out. From

Equation (10), a longer wrinkle wavelength results in a

smaller o'_. Longer wavelength wrinkles pull out at

lower stress levels than shorter wavelength wrinkles,

regardless of wrinkle amplitude. The effect of material

thickness is also evaluated purely through o'_. (go is

not a function of material thickness). From Equation

(10), decreasing material thickness decreases _r_,. For

constant wrinkle geometry, wrinkles pull out at a lower

stress for thinner materials ( or, o, t 2 ).



Co, which is a function of the ratio l/ao,

determines the relative magnitude of strains due to

wrinkles. Due to its dependence on l and ao, several

different wrinkle geometries will result in equal initial

shrinkages. Only as wrinkle amplitude decreases

relative to wrinkle wavelength does the initial shrinkage

also decrease.

Model Validation

The model has been observed to exhibit

deterministic qualities. The constitutive behavior

predicted by the model when parameters are estimated

from direct measurements of wrinkle geometry
correlates with the constitutive behavior observed from

biaxial tensile data. This direct method of estimating

model parameters from measurements of wrinkle

geometry, however, does not yield highly accurate

results. In Murphey's tests the average difference

between model and test data was 22% of eo .7 The

results are adequate for preliminary design calculations

only. A primary limitation of the direct method is in

assigning a single wrinkle amplitude and wavelength

that best characterize a sample with much broader

wrinkle spectral content. Model predictions based on

the direct measurement method of parameter estimation

are compared with experimental data in Figure 12.

More accurate regression based parameter

estimation techniques using tensile test data have also

been investigated. The regression methods provide a

more accurate representation of material behavior and

should be used for final design calculations. In the

regression based methods, a nonlinear regression

routine (Levenberg Marquardt) is used to vary the two

model parameters (Co and ty= ) until the differences

between model and test data are minimized. Results are

shown in Figure 13. The average difference between
7

model and test data is 1.2% of e o .

Concludin_ Remarks

The constitutive model presented in this paper

enables the performance predictions made in this

paper's introduction. However, the full worth of the

model not so limited. General structural analyses of

spacecraft are often performed using the finite element

method. Key to the method is selection of a proper
material constitutive model. Previous to the crease

model, the effects of random material wrinkles were

difficult to included in a general structural analysis
because a viable wrinkled thin film constitutive model

did not exist.

This paper presents a general constitutive model

that enables the elastic analysis of arbitrary wrinkled

thin film structures. The model should be implemented

as a hyperelastic material or as a specialization of a

hypoelastic material model. This capability is typically

included in commercial finite element analysis codes

through the definition of user defined hyperelastic or

hypoelastic materials. Predeflned hyperelastic models

such as the Odgen and Mooney-Rivlin formulations

were developed for rubber and may not have the

dexterity to represent wrinkled thin films. Due to their

similar deformation mechanisms, it is likely that

predefined hyperelastic foam models are better suited to

representing wrinkled thin film behavior.
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Figure 1: The profile of wrinkles with amplitude of 0.0078 in and wavelength of 0.5 in.

: a) _aom Writes b)SyStematic WrigleY:

Figure 2: Examples of random and systematic material wrinkles in unstressed thin film samples (0.5 rail
Kapton ® HN).

L

a) Initial crushing

b) Removal of loads

c) Maximum stress (430psO

d) Second and subsequent loadings

Strain

Figure 3: Plastic and elastic response load cases for wrinkled thin films.



Figure4: Off-axis wrinkle expansion causes a negative Poisson's ratio.

Figure 5: The profile of a randomly wrinkled 0.5 rail Kapton® HN sample.

Repeating_,em _ J _

a) Undeformed Crease Model b) Deformed Crease Model (al = 2, a2-- 0)

Figure 6: The creased beam model (solid lines) shown in original and deformed configurations (dashed lines
are not part of the model, they are to aid visualization).
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Figure 7: Repeating element analysis dimensions.
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Figure 8: Free body diagram for model repeating element.
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Figure 9: Force balance on crease model unit ceil.



%

=6

Figure 10: Constitutive behavior of crease model.
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Figure 11: Equibiaxial stress-strain constitutive behavior of crease model.
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Figure 12: Biaxial tensile test data and model predictions based on directly measured model parameters
(Kapton® Tab E). Dots represent test data and lines represent the model.
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a) Moderately Wrinkled, High Creep Stress. a) Moderately Wrinkled, High Creep Stress.
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Figure 13: Equibiaxial tensile test data and model predictions based on nonlinear regression parameter

estimation method (Kapton® Tab E). Dots represent test data and lines represent the model.
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